2 research outputs found

    The Diophantine problem in Chevalley groups

    Full text link
    In this paper we study the Diophantine problem in Chevalley groups Gπ(Φ,R)G_\pi (\Phi,R), where Φ\Phi is an indecomposable root system of rank >1> 1, RR is an arbitrary commutative ring with 11. We establish a variant of double centralizer theorem for elementary unipotents xα(1)x_\alpha(1). This theorem is valid for arbitrary commutative rings with 11. The result is principle to show that any one-parametric subgroup XαX_\alpha, α∈Φ\alpha \in \Phi, is Diophantine in GG. Then we prove that the Diophantine problem in Gπ(Φ,R)G_\pi (\Phi,R) is polynomial time equivalent (more precisely, Karp equivalent) to the Diophantine problem in RR. This fact gives rise to a number of model-theoretic corollaries for specific types of rings.Comment: 44 page

    Report on Generic Case Complexity

    No full text
    This article is a short introduction to generic case complexity, which is a recently developed way of measuring the difficulty of a computational problem while ignoring atypical behavior on a small set of inputs. Generic case complexity applies to both recursively solvable and recursively unsolvable problems. Content
    corecore